Simulated Analysis of Influence of Changes in H+-ATPase Activity and Membrane CO2 Conductance on Parameters of Photosynthetic Assimilation in Leaves

Author:

Sukhova EkaterinaORCID,Ratnitsyna Daria,Sukhov VladimirORCID

Abstract

Photosynthesis is an important process in plants which influences their development and productivity. Many factors can control the efficiency of photosynthesis, including CO2 conductance of leaf mesophyll, which affects the CO2 availability for Rubisco. It is known that electrical stress signals can decrease this conductance, and the response is probably caused by inactivation of H+-ATPase in the plasma membrane. In the current work, we analyzed the influence of both CO2 conductance in the plasma membrane, and chloroplast envelopes and H+-ATPase activity on photosynthetic CO2 assimilation, using a two-dimensional mathematical model of photosynthesis in leaves. The model included a description of assimilation on the basis of the Farquhar–von Caemmerer–Berry model, ion transport through the plasma membrane, diffusion of CO2 in the apoplast, and transport of CO2 through the plasma membrane and chloroplast envelope. The model showed that the photosynthetic CO2 assimilation rate was mainly dependent on the plasma membrane and chloroplast envelope conductance; direct influence of the H+-ATPase activity (through changes in pH and CO2/HCO3− concentration ratio) on this rate was weak. In contrast, both changes in CO2 conductance of the plasma membrane and chloroplast envelopes and changes in the H+-ATPase activity influenced spatial heterogeneity of the CO2 assimilation on the leaf surface in the simulated two-dimensional system. These effects were also observed under simultaneous changes in the CO2 conductance of the plasma membrane and H+-ATPase activity. Qualitatively similar influence of changes in the CO2 conductance of the plasma membrane and chloroplast envelopes, and changes in the H+-ATPase activity on photosynthesis were shown for two different densities of stomata in the simulated leaf; however, lowering the density of stomata decreased the assimilation rate and increased the heterogeneity of assimilation. The results of the model analysis clarify the potential influence of H+-ATPase inactivation on photosynthesis, and can be the basis for development of new methods for remote sensing of the influence of electrical signals.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3