Photosynthesis solutions to enhance productivity

Author:

Foyer Christine H.1ORCID,Ruban Alexander V.2ORCID,Nixon Peter J.3ORCID

Affiliation:

1. Centre of Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK

2. School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK

3. Faculty of Natural Sciences, Department of Life Sciences, Imperial College, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK

Abstract

The concept that photosynthesis is a highly inefficient process in terms of conversion of light energy into biomass is embedded in the literature. It is only in the past decade that the processes limiting photosynthetic efficiency have been understood to an extent that allows a step change in our ability to manipulate light energy assimilation into carbon gain. We can therefore envisage that future increases in the grain yield potential of our major crops may depend largely on increasing the efficiency of photosynthesis. The papers in this issue provide new insights into the nature of current limitations on photosynthesis and identify new targets that can be used for crop improvement, together with information on the impacts of a changing environment on the productivity of photosynthesis on land and in our oceans. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3