Development, Verification, and Analysis of Simple Mathematical Model of Lettuce Productivity under Different Light Conditions

Author:

Sukhova Ekaterina1ORCID,Yudina Lyubov1ORCID,Zolin Yuriy1,Popova Alyona1,Sukhov Vladimir1ORCID

Affiliation:

1. Department of Biophysics, N. I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia

Abstract

Lettuce is an important agricultural plant which is often cultivated under artificial illumination including light of light emitting diodes (LEDs). Spectrum and intensity of used illumination and duration of photoperiod can strongly influence a final lettuce biomass; their effects can be interacted. It means that search of optimal light conditions is complicated problem for experimental investigations because numerous combinations of light conditions should be analyzed. A mathematical model of lettuce productivity can provide the potential tool for intensification of this search; earlier, we preliminarily proposed the minimal model of lettuce productivity under the LED illumination. The aim of the current work was further development, verification, and analysis of the simple mathematical model of the lettuce productivity. Dry weight of a lettuce leaf rosette was used as the main variable of the model; its changes were described as function of difference between production of biomass through assimilation and its consumption through respiration. The model was quantitively parameterized and verified on basis of our previous experimental works devoted to influence of parameters of the LED illumination on lettuce characteristics. It was shown well correspondence between experimental and simulated results. Further analysis of the developed model predicted optimal illumination conditions of the lettuce cultivation. Particularly, it showed a positive influence of gradual and step increase of the light intensity on final biomass of cultivated lettuce plants. Thus, the developed model can be used as the tool for the theoretical prediction of optimal light conditions for the lettuce cultivation.

Funder

Ministry of Science and Higher Education of the Russian Federation for large scientific projects in priority areas of scientific and technological development

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3