Signaling Pathways That Control Muscle Mass

Author:

Vainshtein AnnaORCID,Sandri Marco

Abstract

The loss of skeletal muscle mass under a wide range of acute and chronic maladies is associated with poor prognosis, reduced quality of life, and increased mortality. Decades of research indicate the importance of skeletal muscle for whole body metabolism, glucose homeostasis, as well as overall health and wellbeing. This tissue’s remarkable ability to rapidly and effectively adapt to changing environmental cues is a double-edged sword. Physiological adaptations that are beneficial throughout life become maladaptive during atrophic conditions. The atrophic program can be activated by mechanical, oxidative, and energetic distress, and is influenced by the availability of nutrients, growth factors, and cytokines. Largely governed by a transcription-dependent mechanism, this program impinges on multiple protein networks including various organelles as well as biosynthetic and quality control systems. Although modulating muscle function to prevent and treat disease is an enticing concept that has intrigued research teams for decades, a lack of thorough understanding of the molecular mechanisms and signaling pathways that control muscle mass, in addition to poor transferability of findings from rodents to humans, has obstructed efforts to develop effective treatments. Here, we review the progress made in unraveling the molecular mechanisms responsible for the regulation of muscle mass, as this continues to be an intensive area of research.

Funder

Agenzia Spaziale Italiana

Associazione Italiana per la Ricerca sul Cancro

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3