Artificial Intelligence Based Object Detection and Tracking for a Small Underwater Robot

Author:

Lee Min-Fan RickyORCID,Chen Ying-Chu

Abstract

Object recognition and tracking is a challenge for underwater vehicles. Traditional algorithm requires a clear feature definition, which suffers from uncertainty as the variation of occlusion, illumination, season and viewpoints. A deep learning approach requires a large amount of training data, which suffers from the computation. The proposed method is to avoid the above drawbacks. The Siamese Region Proposal Network tracking algorithm using two weights sharing is applied to track the target in motion. The key point to overcome is the one-shot detection task when the object is unidentified. Various complex and uncertain environment scenarios are applied to evaluate the proposed system via the deep learning model’s predictions metrics (accuracy, precision, recall, P-R curve, F1 score). The tracking rate based on Siamese Region Proposal Network Algorithm is up to 180 FPS.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3