Boundary Attention Guided Sparse Feature Learning for Underwater Object Tracking in Edge Computing

Author:

Qiu Hongyi1ORCID,Li Ning2ORCID,Li Pengfei3ORCID,Hou Ruitao2ORCID,Zhang Yuting2ORCID,Peng Yun2ORCID

Affiliation:

1. School of Mathematics and Statistics, Changchun University of Science and Technology, China

2. Institute of Artificial Intelligence, Guangzhou University, China

3. School of Civil Engineering and Architecture, Zhengzhou University of Aeronautics, China

Abstract

Underwater visual object tracking is crucial for marine resource exploration and military security. However, due to the effect of insufficient light and turbid background in underwater scenes, efficient and accurate target tracking cannot be realized on underwater edge devices with limited computing resources. To address this problem, we design an underwater object tracking network, namely DBSF, for edge computing devices based on sparse confidence feature learning guided by differential boundary attention. Specifically, we propose a differential boundary attention distribution model to compute the object edge distribution state to enhance the accurate perception of the underwater object edge structure. Then, the differential boundary attention-guided object tracking network learns to perceive the highly discriminative sparse features on the object structure, and computes the object sparse confidence matrix, which reduces the constraints of the edge devices with limited computational resources and ensures the tracking performance. Extensive experiments demonstrate that the DBSF network achieves accurate underwater target recognition and outperforms related advanced methods.

Publisher

Association for Computing Machinery (ACM)

Reference58 articles.

1. Basit Alawode, Yuhang Guo, Mehnaz Ummar, Naoufel Werghi, Jorge Dias, Ajmal Mian, and Sajid Javed. 2022. UTB180: A High-Quality Benchmark for Underwater Tracking. In Proceedings of the Asian Conference on Computer Vision. 3326–3342.

2. Luca Bertinetto, Jack Valmadre, Stuart Golodetz, Ondrej Miksik, and Philip HS Torr. 2016. Staple: Complementary learners for real-time tracking. In Proceedings of the IEEE conference on computer vision and pattern recognition. 1401–1409.

3. Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr. 2016. Fully-convolutional siamese networks for object tracking. In Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14. Springer, 850–865.

4. Learning Discriminative Model Prediction for Tracking

5. Philippe Blatter, Menelaos Kanakis, Martin Danelljan, and Luc Van Gool. 2023. Efficient visual tracking with exemplar transformers. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 1571–1581.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3