Abstract
Lunar soils gradually become mature when they are exposed to a space environment, and nanophase metallic iron (npFe0) generates within them. npFe0 significantly changes the optical properties of lunar soils and affects the interpretation of the remotely sensed data of the lunar surface. In this study, a correlation analysis was conducted between npFe0 abundance and reflectance spectra at short wavelengths for lunar soil samples in four size groups based on their spectral and compositional data, collected by the Lunar Soil Characterization Consortium (LSCC). Results show that 540 nm single scattering albedo (SSA) of lunar soils correlates well with their corresponding npFe0 abundance for each size group of lunar soil samples. However, it is poorly correlated with npFe0 abundance when all size groups were considered because of the strong interference from grain size variation of lunar soils. To minimize the effect of grain size, the correlation of npFe0 abundance with the spectral ratio of 540 nm/810 nm SSA of all size groups for LSCC samples was calculated and results show that a higher correlation existed between them (R2 = 0.91). This ratio can serve as a simple empirical model for estimating npFe0 abundance in lunar soils. However, bias could be introduced to the estimation result when lunar soils possess a high content of agglutinitic glass and ilmenite. Our future work will focus on improving the model’s performance for these lunar soils.
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献