Author:
Feng Naixing,Zhang Yuxian,Wang Guo Ping,Zeng Qingsheng,Joines William T.
Abstract
To simulate complex subsurface sensing and imaging problems with both propagating and evanescent waves by the finite-difference time-domain (FDTD) method, the highly-accurate second-order perfectly matched layer (SO-PML) formulations based on the direct Z-transform (DZT) and the matrix exponential (ME) techniques are compactly and efficiently proposed for modeling open-domain problems. During mathematical deductions, several manipulations, for example, convolution computations, formulation reorganizations, or variable substitutions, can be circumvented due to the fact that the ME-based method shows a compact first-order differential matrix form. Besides, any material attributes can be completely circumvented because of using electric and magnetic flux densities, consequently, the proposed DZT-SO-PML could be applied without needing any alteration. Moreover, the DZT-SO-PML method can not only preserve better absorption accuracies, but also attain palpable improvements in computational efficiencies, even if the distance between the DSP-SO-PML truncation and the target becomes closer for modeling 3D open-domain subsurface sensing and imaging problems. Finally, numerical examples have been carried out to illustrate and validate these proposed formulations.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献