SPACE WEATHERING OF ASTEROID SURFACES

Author:

Chapman Clark R.1

Affiliation:

1. Southwest Research Institute, Suite 400, 1050 Walnut St., Boulder, Colorado 80302;

Abstract

▪ Abstract  Visible and near-infrared spectra of reflected sunlight from asteroid surfaces exhibit features that hold the promise for identifying surface mineralogy. However, the very surfaces that are observed by remote-sensing are also subject to impingement by micrometeoroids and solar wind particles, which are believed to play the dominant role in space weathering, which is the time-dependent modification of an asteroid's reflectance spectrum. Such space weathering has confused the interpretations of telescopic spectra of asteroids, especially concerning the possible association of common ordinary chondritic meteorites with so-called S-type asteroids. Recent spacecraft studies of asteroids (especially of Eros by NEAR-Shoemaker) have documented aspects of space weathering processes, but we still do not understand the physics of space weathering well enough to confidently assay mineralogy of diverse asteroids by remote-sensing. A review of the intellectual history of this topic reveals the complexity of interdisciplinary research on far-away astronomical bodies.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3