A Comparative Study of Engraved-Digit Data Augmentation by Generative Adversarial Networks

Author:

Abdulraheem Abdulkabir,Jung Im Y.ORCID

Abstract

In cases where an efficient information retrieval (IR) system retrieves information from images with engraved digits, as found on medicines, creams, ointments, and gels in squeeze tubes, the system needs to be trained on a large dataset. One of the system applications is to automatically retrieve the expiry date to ascertain the efficacy of the medicine. For expiry dates expressed in engraved digits, it is difficult to collect the digit images. In our study, we evaluated the augmentation performance for a limited, engraved-digit dataset using various generative adversarial networks (GANs). Our study contributes to the choice of an effective GAN for engraved-digit image data augmentation. We conclude that Wasserstein GAN with a gradient norm penalty (WGAN-GP) is a suitable data augmentation technique to address the challenge of producing a large, realistic, but synthetic dataset. Our results show that the stability of WGAN-GP aids in the production of high-quality data with an average Fréchet inception distance (FID) value of 1.5298 across images of 10 digits (0–9) that are nearly indistinguishable from our original dataset.

Funder

National Research Foundation of Korea

Ministry of Education

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference44 articles.

1. Recommender systems in the healthcare domain: state-of-the-art and research issues

2. The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web]

3. Deep Learning with Python;Chollet,2021

4. Generative adversarial nets;Goodfellow;Adv. Neural Inf. Process. Syst.,2020

5. Wasserstein generative adversarial networks;Arjovsky;Proceedings of the International Conference on Machine Learning,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3