Enhancing the Automatic Recognition Accuracy of Imprinted Ship Characters by Using Machine Learning

Author:

Abdulraheem Abdulkabir1,Suleiman Jamiu T.1ORCID,Jung Im Y.1ORCID

Affiliation:

1. School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

In this paper, we address the challenge of ensuring safe operations and rescue efforts in emergency situations, for the sake of a sustainable marine environment. Our focus is on character recognition, specifically on deciphering characters present on the surface of aged and corroded ships, where the markings may have faded or become unclear over time, in contrast to vessels with clearly visible letters. Imprinted ship characters encompassing engraved, embroidered, and other variants found on ship components serve as vital markers for ship identification, maintenance, and safety in marine technology. The accurate recognition of these characters is essential for ensuring efficient operations and effective decision making. This study presents a machine-learning-based method that markedly improves the recognition accuracy of imprinted ship numbers and characters. This improvement is achieved by enhancing data classification accuracy through data augmentation. The effectiveness of the proposed method was validated by comparing it to State-of-the-Art classification technologies within the imprinted ship character dataset. We started with the originally sourced dataset and then systematically increased the dataset size, using the most suitable generative adversarial networks for our dataset. We compared the effectiveness of classic and convolutional neural network (CNN)-based classifiers to our classifier, a CNN-based classifier for imprinted ship characters (CNN-ISC). Notably, on the augmented dataset, our CNN-ISC model achieved impressive maximum recognition accuracy of 99.85% and 99.7% on alphabet and digit recognition, respectively. Overall, data augmentation markedly improved the recognition accuracy of ship digits and alphabets, with the proposed classification model outperforming other methods.

Funder

National Research Foundation

BK21 FOUR project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference38 articles.

1. Chollet, F. (2021). Deep Learning with Python, Simon and Schuster.

2. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014, January 8–13). Generative adversarial nets. Proceedings of the Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, QC, Canada.

3. Application of generative adversarial networks (GAN) for ophthalmology image domains: A survey;You;Eye Vis.,2022

4. Underwater sonar image classification using generative adversarial network and convolutional neural network;Xu;IET Image Process.,2020

5. Hybrid CNN-SVM Classifier for Handwritten Digit Recognition;Ahlawat;Procedia Comput. Sci.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3