A Comparative Analysis of the Novel Conditional Deep Convolutional Neural Network Model, Using Conditional Deep Convolutional Generative Adversarial Network-Generated Synthetic and Augmented Brain Tumor Datasets for Image Classification

Author:

Onakpojeruo Efe Precious12ORCID,Mustapha Mubarak Taiwo12ORCID,Ozsahin Dilber Uzun341,Ozsahin Ilker15ORCID

Affiliation:

1. Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey

2. Department of Biomedical Engineering, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey

3. Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates

4. Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates

5. Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA

Abstract

Disease prediction is greatly challenged by the scarcity of datasets and privacy concerns associated with real medical data. An approach that stands out to circumvent this hurdle is the use of synthetic data generated using Generative Adversarial Networks (GANs). GANs can increase data volume while generating synthetic datasets that have no direct link to personal information. This study pioneers the use of GANs to create synthetic datasets and datasets augmented using traditional augmentation techniques for our binary classification task. The primary aim of this research was to evaluate the performance of our novel Conditional Deep Convolutional Neural Network (C-DCNN) model in classifying brain tumors by leveraging these augmented and synthetic datasets. We utilized advanced GAN models, including Conditional Deep Convolutional Generative Adversarial Network (DCGAN), to produce synthetic data that retained essential characteristics of the original datasets while ensuring privacy protection. Our C-DCNN model was trained on both augmented and synthetic datasets, and its performance was benchmarked against state-of-the-art models such as ResNet50, VGG16, VGG19, and InceptionV3. The evaluation metrics demonstrated that our C-DCNN model achieved accuracy, precision, recall, and F1 scores of 99% on both synthetic and augmented images, outperforming the comparative models. The findings of this study highlight the potential of using GAN-generated synthetic data in enhancing the training of machine learning models for medical image classification, particularly in scenarios with limited data available. This approach not only improves model accuracy but also addresses privacy concerns, making it a viable solution for real-world clinical applications in disease prediction and diagnosis.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3