Pulsed Laser Deposition of Nanostructured MoS3/np-Mo//WO3−y Hybrid Catalyst for Enhanced (Photo) Electrochemical Hydrogen Evolution

Author:

Fominski VyacheslavORCID,Gnedovets AlexeyORCID,Fominski Dmitry,Romanov Roman,Kartsev Petr,Rubinkovskaya Oxana,Novikov Sergey

Abstract

Pulsed laser ablation of MoS2 and WO3 targets at appropriate pressures of background gas (Ar, air) were used for the preparation of new hybrid nanostructured catalytic films for hydrogen production in an acid solution. The films consisted of a nanostructured WO3−y underlayer that was covered with composite MoS3/np-Mo nanocatalyst. The use of dry air with pressures of 40 and 80 Pa allowed the formation of porous WO3−y films with cauliflower- and web-like morphology, respectively. The ablation of the MoS2 target in Ar gas at a pressure of 16 Pa resulted in the formation of amorphous MoS3 films and spherical Mo nanoparticles. The hybrid MoS3/np-Mo//WO3−y films deposited on transparent conducting substrates possessed the enhanced (photo)electrocatalytic performance in comparison with that of any pristine one (MoS3/np-Mo or WO3−y films) with the same loading. Modeling by the kinetic Monte Carlo method indicated that the change in morphology of the deposited WO3−y films could be caused by the transition of ballistic deposition to diffusion limited aggregation of structural units (atoms/clusters) under background gas pressure growth. The factors and mechanisms contributing to the enhancement of the electrocatalytic activity of hybrid nanostructured films and facilitating the effective photo-activation of hydrogen evolution in these films are considered.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3