Metal Chalcogenides on Silicon Photocathodes for Efficient Water Splitting: A Mini Overview

Author:

Joe Jemee,Yang Hyunwoo,Bae Changdeuck,Shin HyunjungORCID

Abstract

In the photoelectrochemical (PEC) water splitting (WS) reactions, a photon is absorbed by a semiconductor, generating electron-hole pairs which are transferred across the semiconductor/electrolyte interface to reduce or oxidize water into oxygen or hydrogen. Catalytic junctions are commonly combined with semiconductor absorbers, providing electrochemically active sites for charge transfer across the interface and increasing the surface band bending to improve the PEC performance. In this review, we focus on transition metal (di)chalcogenide [TM(D)C] catalysts in conjunction with silicon photoelectrode as Earth-abundant materials systems. Surprisingly, there is a limited number of reports in Si/TM(D)C for PEC WS in the literature. We provide almost a complete survey on both layered TMDC and non-layered transition metal dichalcogenides (TMC) co-catalysts on Si photoelectrodes, mainly photocathodes. The mechanisms of the photovoltaic power conversion of silicon devices are summarized with emphasis on the exact role of catalysts. Diverse approaches to the improved PEC performance and the proposed synergetic functions of catalysts on the underlying Si are reviewed. Atomic layer deposition of TM(D)C materials as a new methodology for directly growing them and its implication for low-temperature growth on defect chemistry are featured. The multi-phase TM(D)C overlayers on Si and the operation principles are highlighted. Finally, challenges and directions regarding future research for achieving the theoretical PEC performance of Si-based photoelectrodes are provided.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3