Optimization Methods of Tungsten Oxide-Based Nanostructures as Electrocatalysts for Water Splitting

Author:

Wang Yange1,Wang Rongming1ORCID,Duan Sibin1ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Electrocatalytic water splitting, as a sustainable, pollution-free and convenient method of hydrogen production, has attracted the attention of researchers. However, due to the high reaction barrier and slow four-electron transfer process, it is necessary to develop and design efficient electrocatalysts to promote electron transfer and improve reaction kinetics. Tungsten oxide-based nanomaterials have received extensive attention due to their great potential in energy-related and environmental catalysis. To maximize the catalytic efficiency of catalysts in practical applications, it is essential to further understand the structure–property relationship of tungsten oxide-based nanomaterials by controlling the surface/interface structure. In this review, recent methods to enhance the catalytic activities of tungsten oxide-based nanomaterials are reviewed, which are classified into four strategies: morphology regulation, phase control, defect engineering, and heterostructure construction. The structure–property relationship of tungsten oxide-based nanomaterials affected by various strategies is discussed with examples. Finally, the development prospects and challenges in tungsten oxide-based nanomaterials are discussed in the conclusion. We believe that this review provides guidance for researchers to develop more promising electrocatalysts for water splitting.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

111 Project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3