Crown Structure Explains the Discrepancy in Leaf Phenology Metrics Derived from Ground- and UAV-Based Observations in a Japanese Cool Temperate Deciduous Forest

Author:

Budianti Noviana,Mizunaga Hiromi,Iio Atsuhiro

Abstract

Unmanned aerial vehicles (UAV) provide a new platform for monitoring crown-level leaf phenology due to the ability to cover a vast area while offering branch-level image resolution. However, below-crown vegetation, e.g., understory vegetation, subcanopy trees, and the branches of neighboring trees, along with the multi-layered structure of the target crown may significantly reduce the accuracy of UAV-based estimates of crown leaf phenology. To test this hypothesis, we compared UAV-derived crown leaf phenology results against those based on ground observations at the individual tree scale for 19 deciduous broad-leaved species (55 individuals in total) characterized by different crown structures. The mean crown-level green chromatic coordinate derived from UAV images poorly explained inter- and intra-species variations in spring leaf phenology, most probably due to the consistently early leaf emergence in the below-crown vegetation. The start dates for leaf expansion and end dates for leaf falling could be estimated with an accuracy of <1-week when the influence of below-crown vegetation was removed from the UAV images through visual interpretation. However, a large discrepancy between the phenological metrics derived from UAV images and ground observations was still found for the end date of leaf expansion (EOE) and start date of leaf falling (SOF). Bayesian modeling revealed that the discrepancy for EOE increased as crown length and volume increased. The crown structure was not found to contribute to the discrepancy in SOF value. Our study provides evidence that crown structure is a pivotal factor to consider when using UAV photography to reliably estimate crown leaf phenology at the individual tree-scale.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3