Tree Crown Detection and Delineation in a Temperate Deciduous Forest from UAV RGB Imagery Using Deep Learning Approaches: Effects of Spatial Resolution and Species Characteristics

Author:

Gan Yi1,Wang Quan2,Iio Atsuhiro2ORCID

Affiliation:

1. Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan

2. Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan

Abstract

The automatic detection of tree crowns and estimation of crown areas from remotely sensed information offer a quick approach for grasping the dynamics of forest ecosystems and are of great significance for both biodiversity and ecosystem conservation. Among various types of remote sensing data, unmanned aerial vehicle (UAV)-acquired RGB imagery has been increasingly used for tree crown detection and crown area estimation; the method has efficient advantages and relies heavily on deep learning models. However, the approach has not been thoroughly investigated in deciduous forests with complex crown structures. In this study, we evaluated two widely used, deep-learning-based tree crown detection and delineation approaches (DeepForest and Detectree2) to assess their potential for detecting tree crowns from UAV-acquired RGB imagery in an alpine, temperate deciduous forest with a complicated species composition. A total of 499 digitized crowns, including four dominant species, with corresponding, accurate inventory data in a 1.5 ha study plot were treated as training and validation datasets. We attempted to identify an effective model to delineate tree crowns and to explore the effects of the spatial resolution on the detection performance, as well as the extracted tree crown areas, with a detailed field inventory. The results show that the two deep-learning-based models, of which Detectree2 (F1 score: 0.57) outperformed DeepForest (F1 score: 0.52), could both be transferred to predict tree crowns successfully. However, the spatial resolution had an obvious effect on the estimation accuracy of tree crown detection, especially when the resolution was greater than 0.1 m. Furthermore, Dectree2 could estimate tree crown areas accurately, highlighting its potential and robustness for tree detection and delineation. In addition, the performance of tree crown detection varied among different species. These results indicate that the evaluated approaches could efficiently delineate individual tree crowns in high-resolution optical images, while demonstrating the applicability of Detectree2, and, thus, have the potential to offer transferable strategies that can be applied to other forest ecosystems.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of temperate forest autumn leaf phenology on segmentation of tree species from UAV imagery using deep learning;Remote Sensing of Environment;2024-09

2. Shoot complexes on the apical part of the crown of generative <i>Fraxinus excelsior</i> L. trees;Proceedings on applied botany, genetics and breeding;2024-07-20

3. Individual canopy tree species maps for the National Ecological Observatory Network;PLOS Biology;2024-07-16

4. Deep Learning Analysis of UAV Lidar Point Cloud for Individual Tree Detecting;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

5. UAV Imagery to Support Individual Tree Management and Monitoring;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3