Individual tree crown delineation in high-resolution remote sensing images based on U-Net

Author:

Freudenberg MaximilianORCID,Magdon Paul,Nölke Nils

Abstract

AbstractWe present a deep learning-based framework for individual tree crown delineation in aerial and satellite images. This is an important task, e.g., for forest yield or carbon stock estimation. In contrast to earlier work, the presented method creates irregular polygons instead of bounding boxes and also provides a tree cover mask for areas that are not separable. Furthermore, it is trainable with low amounts of training data and does not need 3D height information from, e.g., laser sensors. We tested the approach in two scenarios: (1) with 30 cm WorldView-3 satellite imagery from an urban region in Bengaluru, India, and (2) with 5 cm aerial imagery of a densely forested area near Gartow, Germany. The intersection over union between the reference and predicted tree cover mask is 71.2% for the satellite imagery and 81.9% for the aerial images. On the polygon level, the method reaches an accuracy of 46.3% and a recall of 63.7% in the satellite images and an accuracy of 52% and recall of 66.2% in the aerial images, which is comparable to previous works that only predicted bounding boxes. Depending on the image resolution, limitations to separate individual tree crowns occur in situations where trees are hardly separable even for human image interpreters (e.g., homogeneous canopies, very small trees). The results indicate that the presented approach can efficiently delineate individual tree crowns in high-resolution optical images. Given the high availability of such imagery, the framework provides a powerful tool for tree monitoring. The source code and pretrained weights are publicly available at https://github.com/AWF-GAUG/TreeCrownDelineation.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium fur Verkehr und Digitale Infrastruktur

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3