TreeDetector: Using Deep Learning for the Localization and Reconstruction of Urban Trees from High-Resolution Remote Sensing Images

Author:

Gong Haoyu1,Sun Qian2ORCID,Fang Chenrong1,Sun Le2ORCID,Su Ran1ORCID

Affiliation:

1. College of Intelligence and Computing, Tianjin University, Tianjin 300072, China

2. School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

There have been considerable efforts in generating tree crown maps from satellite images. However, tree localization in urban environments using satellite imagery remains a challenging task. One of the difficulties in complex urban tree detection tasks lies in the segmentation of dense tree crowns. Currently, methods based on semantic segmentation algorithms have made significant progress. We propose to split the tree localization problem into two parts, dense clusters and single trees, and combine the target detection method with a procedural generation method based on planting rules for the complex urban tree detection task, which improves the accuracy of single tree detection. Specifically, we propose a two-stage urban tree localization pipeline that leverages deep learning and planting strategy algorithms along with region discrimination methods. This approach ensures the precise localization of individual trees while also facilitating distribution inference within dense tree canopies. Additionally, our method estimates the radius and height of trees, which provides significant advantages for three-dimensional reconstruction tasks from remote sensing images. We compare our results with other existing methods, achieving an 82.3% accuracy in individual tree localization. This method can be seamlessly integrated with the three-dimensional reconstruction of urban trees. We visualized the three-dimensional reconstruction of urban trees generated by this method, which demonstrates the diversity of tree heights and provides a more realistic solution for tree distribution generation.

Funder

National Natural Science Foundation of China

Startup Foundation for Introducing Talent of NUIST

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3