Abstract
Understanding forest tree phenology is essential for assessing forest ecosystem responses to environmental changes. Observations of phenology using remote sensing devices, such as satellite imagery and Unmanned Aerial Vehicles (UAVs), along with machine learning, are promising techniques. They offer fast, accurate, and unbiased results linked to ground data to enable us to understand ecosystem processes. Here, we focused on European beech, one of Europe’s most common forest tree species, along an altitudinal transect in the Carpathian Mountains. We performed ground observations of leaf phenology and collected aerial images using UAVs and satellite-based biophysical vegetation parameters. We studied the time series correlations between ground data and remote sensing observations (GLI r = 0.86 and FCover r = 0.91) and identified the most suitable vegetation indices (VIs). We trained linear and non-linear (random forest) models to predict the leaf phenology as a percentage of leaf cover on test datasets; the models had reasonable accuracy, RMSE percentages of 8% for individual trees, using UAV, and 12% as an average site value, using the Copernicus biophysical parameters. Our results suggest that the UAVs and satellite images can provide reliable data regarding leaf phenology in the European beech.
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献