Antimicrobial Evaluation of Various Honey Types against Carbapenemase-Producing Gram-Negative Clinical Isolates

Author:

Stavropoulou ElisavetORCID,Voidarou Chrysoula (Chrysa)ORCID,Rozos Georgios,Vaou Natalia,Bardanis Michael,Konstantinidis Theodoros,Vrioni GeorgiaORCID,Tsakris AthanasiosORCID

Abstract

The development of antibiotic resistance is a major public health issue, as infections are increasingly unresponsive to antibiotics. Emerging antimicrobial resistance has raised researchers’ interest in the development of alternative strategies using natural compounds with antibacterial activity, like honey, which has emerged as an agent to treat several infections and wound injuries. Nevertheless, the antibacterial effect of honey was mostly evaluated against Gram-positive bacteria. Hence, the objective of our study was to evaluate the antibacterial activity, as well as the physicochemical parameters, of genuine Greek honeys against multidrug-resistant Gram-negative pathogenic bacteria. In this vein, we aimed to study the in vitro antibacterial potential of rare Greek honeys against Verona integron-encoded metallo-β-lactamase (VIM)- or Klebsiella pneumoniae carbapenemase-producing multidrug-resistant Gram-negative pathogens. Physicochemical parameters such as pH, hydrogen peroxide, free acidity, lactonic acid, total phenols total flavonoids, free radical scavenging activities, tyrosinase enzyme inhibitory activity and kojic acid were examined. Moreover, the antimicrobial activity of 10 different honey types was evaluated in five consecutive dilutions (75%, 50%, 25%, 12.5% and 6.25%) against the clinical isolates by the well diffusion method, as well as by the determination of the minimum inhibition concentration after the addition of catalase and protease. Almost all the physicochemical parameters varied significantly among the different honeys. Fir and manuka honey showed the highest values in pH and H2O2, while the free acidity and lactonic acid levels were higher in chestnut honey. Total phenols, total flavonoids and free radical scavenging activities were found higher in cotton, arbutus and manuka honey, and finally, manuka and oregano honeys showed higher tyrosinase inhibition activity and kojic acid levels. The antimicrobial susceptibility depended on the type of honey, on its dilution, on the treatment methodology and on the microorganism. Arbutus honey was the most potent against VIM-producing Enterobacter cloacae subsp. dissolvens in 75% concentration, while fir honey was more lethal for the same microorganism in the 25% concentration. Many honeys outperformed manuka honey in their antibacterial potency. It is of interest that, for any given concentration in the well diffusion method and for any given type of honey, significant differences were not detected among the four multidrug-resistant pathogens, which explains that the damaging effect to the bacterial cells was the same regardless of the bacterial species or strain. Although the antimicrobial potency of different honey varieties dependents on their geographical origin and on their compositional differences, the exact underlying mechanism remains yet unclear.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference124 articles.

1. Apparent antibiotic misuse in environmental ecosystems and food

2. Molecular mechanisms of antibiotic resistance

3. WEF Global Risks Report 2013.pdfhttps://www3.weforum.org/docs/WEF_GlobalRisks_Report_2013.pdf

4. WEF_GlobalRisks_Report_2014.pdfhttps://www3.weforum.org/docs/WEF_GlobalRisks_Report_2014.pdf

5. Multidrug Antibiotic Resistance Increasing in Europe. European Centre for Disease Prevention and Controlhttps://www.ecdc.europa.eu/en/news-events/multidrug-antibiotic-resistance-increasing-europe

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3