Towards Developing an Automated Faults Characterisation Framework for Rotating Machines. Part 1: Rotor-Related Faults

Author:

Yunusa-Kaltungo AkiluORCID,Cao RuifengORCID

Abstract

Rotating machines are pivotal to the achievement of core operational objectives within various industries. Recent drives for developing smart systems coupled with the significant advancements in computational technologies have immensely increased the complexity of this group of critical physical industrial assets (PIAs). Vibration-based techniques have contributed significantly towards understanding the failure modes of rotating machines and their associated components. However, the very large data requirements attributable to routine vibration-based fault diagnosis at multiple measurement locations has led to the quest for alternative approaches that possess the capability to reduce faults diagnosis downtime. Initiatives aimed at rationalising vibration-based condition monitoring data in order to just retain information that offer maximum variability includes the combination of coherent composite spectrum (CCS) and principal components analysis (PCA) for rotor-related faults diagnosis. While there is no doubt about the potentials of this approach, especially that it is independent of the number of measurement locations and foundation types, its over-reliance on manual classification made it prone to human subjectivity and lack of repeatability. The current study therefore aims to further enhance existing CCS capability in two facets—(1) exploration of the possibility of automating the process by testing its compatibility with various machine learning techniques (2) incorporating spectrum energy as a novel feature. It was observed that artificial neural networks (ANN) offered the most accurate and consistent classification outcomes under all considered scenarios, which demonstrates immense opportunity for automating the process. The paper describes computational approaches, signal processing parameters and experiments used for generating the analysed vibration data.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3