Air leaks fault detection in maintenance using machine learning

Author:

Barakat NeveenORCID,Hajeir Liana,Alattal Sarah,Hussein Zain,Awad MahmoudORCID

Abstract

PurposeThe objective of this paper is to develop a condition-based maintenance (CBM) scheme for pneumatic cylinders. The CBM scheme will detect two common types of air leaking failure modes and identify the leaky/faulty cylinder. The successful implementation of the proposed scheme will reduce energy consumption, scrap and rework, and time to repair.Design/methodology/approachEffective implementation of maintenance is important to reduce operation cost, improve productivity and enhance quality performance at the same time. Condition-based monitoring is an effective maintenance scheme where maintenance is triggered based on the condition of the equipment monitored either real time or at certain intervals. Pneumatic air systems are commonly used in many industries for packaging, sorting and powering air tools among others. A common failure mode of pneumatic cylinders is air leaks which is difficult to detect for complex systems with many connections. The proposed method consists of monitoring the stroke speed profile of the piston inside the pneumatic cylinder using hall effect sensors. Statistical features are extracted from the speed profiles and used to develop a fault detection machine learning model. The proposed method is demonstrated using a real-life case of tea packaging machines.FindingsBased on the limited data collected, the ensemble machine learning algorithm resulted in 88.4% accuracy. The algorithm can detect failures as soon as they occur based on majority vote rule of three machine learning models.Practical implicationsEarly air leak detection will improve quality of packaged tea bags and provide annual savings due to time to repair and energy waste reduction. The average annual estimated savings due to the implementation of the new CBM method is $229,200 with a payback period of less than two years.Originality/valueTo the best of the authors’ knowledge, this paper is the first in terms of proposing a CBM for pneumatic systems air leaks using piston speed. Majority, if not all, current detection methods rely on expensive equipment such as infrared or ultrasonic sensors. This paper also contributes to the research gap of economic justification of using CBM.

Publisher

Emerald

Reference56 articles.

1. Analysis of pneumatic parameters to identify leakages and faults on the demand side of a compressed air system;Cleaner Engineering and Technology,2022

2. A review on fault detection and diagnosis techniques: and efficient human-robot collaboration in the digital industry: a survey;IEEE Transactions on Automation Science and Engineering,2022

3. Adhikari, P., Rao, H. and Buderath, D. (2018), Machine Learning based Data Driven Diagnostics & Framework for Aircraft Predictive Maintenance, Dresden.

4. Anis, M.D. (2018), Towards Remaining Useful Life Prediction in Rotating Machine Fault Prognosis: An Exponential Degradation Model, Dubai.

5. An adaptive constrained clustering approach for real-time fault detection of industrial systems;European Journal of Control,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3