Mapping Woody Volume of Mediterranean Forests by Using SAR and Machine Learning: A Case Study in Central Italy

Author:

Santi EmanueleORCID,Chiesi MartaORCID,Fontanelli GiacomoORCID,Lapini AlessandroORCID,Paloscia SimonettaORCID,Pettinato SimoneORCID,Ramat Giuliano,Santurri LeonardoORCID

Abstract

In this paper, multi-frequency synthetic aperture radar (SAR) data at L- and C-bands (ALOS PALSAR and Envisat/ASAR) were used to estimate forest biomass in Tuscany, in Central Italy. The ground measurements of woody volume (WV, in m3/ha), which can be considered as a proxy of forest biomass, were retrieved from the Italian National Forest Inventory (NFI). After a preliminary investigation to assess the sensitivity of backscatter at C- and L-bands to forest biomass, an approach based on an artificial neural network (ANN) was implemented. The ANN was trained using the backscattering coefficient at L-band (ALOS PALSAR, HH and HV polarization) and C-band (Envisat ASAR in HH polarization) as inputs. Spatially distributed WV values for the entire test area were derived by the integration (fusion) of a canopy height map derived from the Ice, Cloud, and Land Elevation Geoscience Laser Altimeter System (ICESat GLAS) and the NFI data, in order to build a significant ground truth dataset for the training stage. The analysis of the backscattering sensitivity to WV showed a moderate correlation at L-band and was almost negligible at C-band. Despite this, the ANN algorithm was able to exploit the synergy of SAR frequencies and polarizations, estimating WV with average Pearson’s correlation coefficient (R) = 0.96 and root mean square error (RMSE) ≃ 39 m3/ha when applied to the test dataset and average R = 0.86 and RMSE ≃ 75 m3/ha when validated on the direct measurements from the NFI. Considering the heterogeneity of the scenario (Mediterranean mixed forests in hilly landscape) and the small amount of available ground measurements with respect to the spatial variability of different plots, the obtained results can be considered satisfactory. Moreover, the successful use of WV from global maps for implementing the algorithm suggests the possibility to apply the algorithm to wider areas or even to global scales.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference67 articles.

1. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015

2. New estimates of CO2 forest emissions and removals: 1990–2015

3. Forest Ecosystems: Analysis at Multiple Scales;Waring,2010

4. Forest ecosystem inventory and monitoring as a framework for terrestrial natural renewable resource survey programmes

5. Definitional Issues Related to Reducing Emissions from Deforestation in Developing Countrieshttp://www.fao.org/3/j9345e/j9345e12.htm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3