Use Remote Sensing and Machine Learning to Study the Changes of Broad-Leaved Forest Biomass and Their Climate Driving Forces in Nature Reserves of Northern Subtropics

Author:

Sun ZhibinORCID,Qian Wenqi,Huang Qingfeng,Lv Haiyan,Yu Dagui,Ou Qiangxin,Lu Haomiao,Tang XuehaiORCID

Abstract

Forest is the largest vegetation carbon pool in the global terrestrial ecosystem. The spatial distribution and change of forest biomass are of importance to reveal the surface spatial variation and driving factors, to analyze and evaluate forest productivity, and to evaluate ecological function of forest. In this study, broad-leaved forests located in a typical state nature reserve in northern subtropics were selected as the study area. Based on ground survey data and high-resolution remote sensing images, three machine learning models were used to identify the best remote sensing quantitative inversion model of forest biomass. The biomass of broad-leaved forest with 30-m resolution in the study area from 1998 to 2016 was estimated by using the best model about every two years. With the estimated biomass, multiple leading factors to cause biomass temporal change were then identified from dozens of remote sensing factors by investigating their nonlinear correlations. Our results showed that the artificial neural network (ANN) model was the best (R2 = 0.8742) among the three, and its accuracy was also much higher than that of the traditional linear or nonlinear models. The mean biomass of the broad-leaved forest in the study area from 1998 to 2016 ranged from 90 to 145 Mg ha−1, showing an obvious temporal variation. Instead of biomass, biomass change (BC) was studied further in this research. Significant correlations were found between BC in broad-leaved forest and three climate factors, including average daily maximum surface temperature, maximum precipitation, and maximum mean temperature. It was also found that BC has a strong correlation with the biomass at the previous time (i.e., two years ago). Those quantitative correlations were used to construct a linear model of BC with high accuracy (R2 = 0.8873), providing a new way to estimate the biomass change of two years later based on the observations of current biomass and the three climate factors.

Funder

Anhui Dabie Mountains Forest Ecosystem Research Station

Anhui Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3