Review on the Possibilities of Mapping Old-Growth Temperate Forests by Remote Sensing in Europe

Author:

Hirschmugl ManuelaORCID,Sobe Carina,Di Filippo Alfredo,Berger Vanessa,Kirchmeir Hanns,Vandekerkhove Kris

Abstract

AbstractOld-growth forests (OGF) provide valuable ecosystem services such as habitat provision, carbon sequestration or recreation maintaining biodiversity, carbon storage, or human well-being. Long-term human pressure caused OGFs in Europe to be rare and scattered. Their detailed extent and current status are largely unknown. This review aims to identify potential methods to map temperate old-growth forests (tOGF) by remote sensing (RS) technology, highlights the potentials and benefits, and identifies main knowledge gaps requesting further research. RS offers a wide range of data and methods to map forests and their properties, applicable from local to continental scale. We structured existing mapping approaches in three main groups. First, parameter-based approaches, which are based on forest parameters and usually applied on local to regional scale using detailed data, often from airborne laser scanning (ALS). Second, direct approaches, usually employing machine learning algorithms to generate information from RS data, with high potential for large-area mapping but so far lacking operational applications and related sound accuracy assessment. Finally, indirect approaches integrating various existing data sets to predict OGF existence. These approaches have also been used for large area mapping with a main drawback of missing physical evidence of the identified areas to really hold OGFs as compared to the likelihood of OGF existence. In conclusion, studies dealing with the mapping of OGF using remote sensing are quite limited, but there is a huge amount of knowledge from other forestry-related applications that is yet to be leveraged for OGF identification. We discuss two scenarios, where different data and approaches are suitable, recognizing that one single system cannot serve all potential needs. These may be hot spot identification, detailed area delineation, or status assessment. Further, we pledge for a combined method to overcome the identified limitations of the individual approaches.

Funder

European Commission

JOANNEUM RESEARCH Forschungsgesellschaft mbH

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3