Abstract
This paper considers the issue of linear-quadratic regulator (LQR) design for nonlinear systems with the use of smooth state and input transformations. The proposed design methodology is considered in the stabilisation task of the Pendubot, which is based on the concept of feedback equivalent control systems. It turns out that it is possible to find a controller that ensures comparable dynamics of the closed-loop system in the vicinity of the set point regardless of the state-space representation adopted. In addition, the synthesis of suboptimal controllers according to the LQR strategy ensuring equal dynamics at the equilibrium point is presented. The properties of the studied controllers were investigated in a simulation environment and using experimental tests. The detailed forms of transformations and linear approximations given can be regarded as ready-made procedures that can be applied to stabilise similar mechanical systems in robotics.
Funder
Poznan University of Technology
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献