Energy Saving-Oriented Multi-Depot Vehicle Routing Problem with Time Windows in Disaster Relief

Author:

Xu Peng1,Liu Qixing1,Wu Yuhu1ORCID

Affiliation:

1. Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, School of Control Science and Engineering, Dalian University of Technology, Dalian 116081, China

Abstract

This paper studies the distribution of emergency relief for electric vehicles (EVs), which considers energy saving, multi-depot, and vehicle routing problems with time windows, and the named energy saving-oriented multi-depot vehicle routing problem with time windows (ESMDVRPTW). Our aim is to find routes for EVs such that all the shelter demands are fulfilled during their time windows and the total cost traveled by the fleet is minimized. To this end, we formulate the ESMDVRPTW as a mixed-integer linear programming model. Since the post-disaster transportation network contains a large number of vertices and arcs composed of vertices, we propose a two-stage approach to solve the ESMDVRPTW. The first stage is to obtain the minimal travel cost between any two vertices in real-time on a post-disaster transportation network using the proposed Floyd algorithm combined with the neighboring list (Floyd-NL algorithm). In the second stage, we develop the genetic algorithm (GA) incorporating large neighborhood search (GA-LNS), which determines the delivery scheme of shelters. Simulation results of the MDVRPTW benchmark illustrate that the performance of the GA-LNS is better than GA, simulated annealing (SA) and tabu search (TS). Finally, case studies are constructed on two real cases acquired from the OpenStreetMap (OSM) generated by the Quantum Geographic Information System (QGIS) in Ichihara city, Japan, and the test results of case studies show the effectiveness of the proposed two-stage approach.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vehicle Route Planning for Relief Item Distribution under Flood Uncertainty;Applied Sciences;2024-05-24

2. Review of research on vehicle routing problems;International Conference on Smart Transportation and City Engineering (STCE 2023);2024-02-14

3. AI-Enabled Trajectory Optimization of Logistics UAVs With Wind Impacts in Smart Cities;IEEE Transactions on Consumer Electronics;2024-02

4. A Study on the Vehicle Routing Problem Considering Infeasible Routing Based on the Improved Genetic Algorithm;International Journal of Engineering and Technology Innovation;2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3