A Clustering Approach for the Optimal Siting of Recharging Stations in the Electric Vehicle Routing Problem with Time Windows

Author:

Sánchez Danny GarcíaORCID,Tabares Alejandra,Faria Lucas TelesORCID,Rivera Juan CarlosORCID,Franco John FredyORCID

Abstract

Transportation has been incorporating electric vehicles (EVs) progressively. EVs do not produce air or noise pollution, and they have high energy efficiency and low maintenance costs. In this context, the development of efficient techniques to overcome the vehicle routing problem becomes crucial with the proliferation of EVs. The vehicle routing problem concerns the freight capacity and battery autonomy limitations in different delivery-service scenarios, and the challenge of best locating recharging stations. This work proposes a mixed-integer linear programming model to solve the electric location routing problem with time windows (E-LRPTW) considering the state of charge, freight and battery capacities, and customer time windows in the decision model. A clustering strategy based on the k-means algorithm is proposed to divide the set of vertices (EVs) into small areas and define potential sites for recharging stations, while reducing the number of binary variables. The proposed model for E-LRPTW was implemented in Python and solved using mathematical modeling language AMPL together with CPLEX. Performed tests on instances with 5 and 10 clients showed a large reduction in the time required to find the solution (by about 60 times in one instance). It is concluded that the strategy of dividing customers by sectors has the potential to be applied and generate solutions for larger geographical areas and numbers of recharging stations, and determine recharging station locations as part of planning decisions in more realistic scenarios.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

São Paulo Research Foundation

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3