Vehicle Route Planning for Relief Item Distribution under Flood Uncertainty

Author:

Toathom Thanan1ORCID,Champrasert Paskorn1ORCID

Affiliation:

1. OASYS Research Group, Department of Computer Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

Flooding, a pervasive and severe natural disaster, significantly damages environments and infrastructure and endangers human lives. In affected regions, disruptions to transportation networks often lead to critical shortages of essential supplies, such as food and water. The swift and adaptable delivery of relief goods via vehicle is vital to sustain life and facilitate community recovery. This paper introduces a novel model, the Vehicle Routing Problem for Relief Item Distribution under Flood Uncertainty (VRP-RIDFU), which focuses on optimizing the speed of route generation and minimizing waiting times for aid delivery in flood conditions. The Genetic Algorithm (GA) is employed because it effectively handles the uncertainties typical of NP-Hard problems. This model features a dual-population strategy: random and enhanced populations, with the latter specifically designed to manage uncertainties through anticipated route performance evaluations, incorporating factors like waiting times and flood risks. The Population Sizing Module (PSM) is implemented to dynamically adjust the population size based on the dispersion of affected nodes, using standard deviation assessments. Introducing the Complete Subtour Order Crossover (CSOX) method improves solution quality and accelerates convergence. The model’s efficacy is validated through simulated flood scenarios that emulate various degrees of uncertainty in road conditions, affirming its practicality for real-life rescue operations. Focusing on prioritizing waiting times over travel times in routing decisions has proven effective. The model has been tested using standard CVRP problems with 20 distinct sets, each with varying node numbers and patterns, demonstrating superior performance and efficiency in generating vehicle routing plans compared to the shortest routes, which serve as the benchmark for optimal solutions. The results highlight the model’s capability to deliver high-quality solutions more rapidly across all tested scenarios.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3