XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries

Author:

Jafari SadiqaORCID,Byun Yung-CheolORCID

Abstract

The instability and variable lifetime are the benefits of high efficiency and low-cost issues in lithium-ion batteries.An accurate equipment’s remaining useful life prediction is essential for successful requirement-based maintenance to improve dependability and lower total maintenance costs. However, it is challenging to assess a battery’s working capacity, and specific prediction methods are unable to represent the uncertainty. A scientific evaluation and prediction of a lithium-ion battery’s state of health (SOH), mainly its remaining useful life (RUL), is crucial to ensuring the battery’s safety and dependability over its entire life cycle and preventing as many catastrophic accidents as feasible. Many strategies have been developed to determine the prediction of the RUL and SOH of lithium-ion batteries, including particle filters (PFs). This paper develops a novel PF-based technique for lithium-ion battery RUL estimation, combining a Kalman filter (KF) with a PF to analyze battery operating data. The PF method is used as the core, and extreme gradient boosting (XGBoost) is used as the observation RUL battery prediction. Due to the powerful nonlinear fitting capabilities, XGBoost is used to map the connection between the retrieved features and the RUL. The life cycle testing aims to gather precise and trustworthy data for RUL prediction. RUL prediction results demonstrate the improved accuracy of our suggested strategy compared to that of other methods. The experiment findings show that the suggested technique can increase the accuracy of RUL prediction when applied to a lithium-ion battery’s cycle life data set. The results demonstrate the benefit of the presented method in achieving a more accurate remaining useful life prediction.

Funder

Ministry of Small and Medium-sized Enterprises (SMEs) and Startups (MSS), Korea

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3