Abstract
The instability and variable lifetime are the benefits of high efficiency and low-cost issues in lithium-ion batteries.An accurate equipment’s remaining useful life prediction is essential for successful requirement-based maintenance to improve dependability and lower total maintenance costs. However, it is challenging to assess a battery’s working capacity, and specific prediction methods are unable to represent the uncertainty. A scientific evaluation and prediction of a lithium-ion battery’s state of health (SOH), mainly its remaining useful life (RUL), is crucial to ensuring the battery’s safety and dependability over its entire life cycle and preventing as many catastrophic accidents as feasible. Many strategies have been developed to determine the prediction of the RUL and SOH of lithium-ion batteries, including particle filters (PFs). This paper develops a novel PF-based technique for lithium-ion battery RUL estimation, combining a Kalman filter (KF) with a PF to analyze battery operating data. The PF method is used as the core, and extreme gradient boosting (XGBoost) is used as the observation RUL battery prediction. Due to the powerful nonlinear fitting capabilities, XGBoost is used to map the connection between the retrieved features and the RUL. The life cycle testing aims to gather precise and trustworthy data for RUL prediction. RUL prediction results demonstrate the improved accuracy of our suggested strategy compared to that of other methods. The experiment findings show that the suggested technique can increase the accuracy of RUL prediction when applied to a lithium-ion battery’s cycle life data set. The results demonstrate the benefit of the presented method in achieving a more accurate remaining useful life prediction.
Funder
Ministry of Small and Medium-sized Enterprises (SMEs) and Startups (MSS), Korea
Korea Institute for Advancement of Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献