Improving the Road and Traffic Control Prediction Based on Fuzzy Logic Approach in Multiple Intersections

Author:

Jafari SadiqaORCID,Shahbazi ZeinabORCID,Byun Yung-CheolORCID

Abstract

Traffic congestion is a significant issue in many countries today. The suggested method is a novel control method based on multiple intersections considering the kind of traffic light and the duration of the green phase to determine the optimal balance at intersections by using fuzzy logic control, for which the balance should be adaptable to the unchanging behavior of time. It should reduce traffic volume in transport, average waits for each vehicle, and collisions between cars by controlling this balance in response to the typical behavior of time and randomness in traffic conditions. The proposed method is investigated at intersections using a sampling multi-agent system to set traffic light timings appropriately. The program is provided with many intersections, each of which is an independent entity exchanging information with the others. The stability per entity is proven separately. Simulation results show that Takagi–Sugeno (TS) fuzzy modeling performs better than Takagi–Sugeno (TS) fixed-time scheduling in decreasing the length of queueing times for vehicles.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference65 articles.

1. A Coordinated Charging Scheduling of Electric Vehicles Considering Optimal Charging Time for Network Power Loss Minimization

2. Parallel Reinforcement Learning for Traffic Signal Control

3. Traffic lights control system for Indian cities using WSN and Fuzzy control;Garg;Traffic,2017

4. SCATS-application and field comparison with a transyt optimised fixed time system;Luk;Proceedings of the International Conference on Road Traffic Signalling,1982

5. Traffic signal control optimization based on fuzzy neural network;Jia;Proceedings of the 2012 International Conference on Measurement, Information and Control,2012

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3