Optimized XGBoost modeling for accurate battery capacity degradation prediction
-
Published:2024-09
Issue:
Volume:
Page:102786
-
ISSN:2590-1230
-
Container-title:Results in Engineering
-
language:en
-
Short-container-title:Results in Engineering
Author:
Jafari SadiqaORCID, Yang Ji-Hyeok, Byun Yung-Cheol
Reference71 articles.
1. X. Han, L. Lu, Y. Zheng, X. Feng, Z. Li, J. Li, M. Ouyang, A review on the key issues of the lithium ion battery degradation among the whole life cycle, ETransportation 1 (2019) 100005. 2. S. Sepasiahooyi, F. Abdollahi, Fault detection of new and aged lithium-ion battery cells in electric vehicles, Green Energy and Intelligent Transportation (2024) 100165. 3. S. Jafari, Z. Shahbazi, Y.-C. Byun, Lithium-ion battery health prediction on hybrid vehicles using machine learning approach, Energies 15 (13) (2022) 4753. 4. H. Liu, Z. Deng, Y. Yang, C. Lu, B. Li, C. Liu, D. Cheng, Capacity evaluation and degradation analysis of lithium-ion battery packs for on-road electric vehicles, Journal of Energy Storage 65 (2023) 107270. 5. Y. Yang, J. Qiu, C. Zhang, J. Zhao, G. Wang, Flexible integrated network planning considering echelon utilization of second life of used electric vehicle batteries, IEEE Transactions on Transportation Electrification 8 (1) (2021) 263–276.
|
|