Lithium-Ion Battery Health Prediction on Hybrid Vehicles Using Machine Learning Approach

Author:

Jafari Sadiqa,Shahbazi ZeinabORCID,Byun Yung-CheolORCID

Abstract

Efforts to decarbonize the world have shown a quick increase in electric vehicles (EVs), limiting increasing pollution. During this electric transportation revolution, lithium-ion batteries (LIBs) play a vital role in storing energy. To determine the range of an electric vehicle (EV), the state of charge and the state of health (SOH) of the battery pack is essential. Access to high-quality data on battery parameters is a crucial challenge for researchers working in the energy storage domain due primarily to confidentiality constraints on manufacturers of batteries and EVs. This paper proposes a hybrid framework for predicting the state of a lithium-ion battery for electric vehicles (EV). Electric vehicles are growing worldwide because of their environmental and sustainability advantages. Batteries are replacing fossil fuels in electric vehicles. In order to prevent failure, Li-ion batteries in electric vehicles should be operated and controlled in a controlled and progressive manner to ensure increased efficiency and safety. An extreme gradient boosting (XGBoost) algorithm is used in this paper to estimate the state of health (SOH) of lithium-ion batteries used in electric vehicles. The model is subjected to error analysis to optimize the battery’s performance parameter. The model undergoes an error analysis to optimize its performance parameters. Furthermore, a state of health (SOH) estimation method based on the extreme gradient boosting algorithm with accuracy correction is proposed here to improve the accuracy of state of health (SOH) estimation for lithium-ion batteries. To describe the aging process of batteries, we extract several features such as average voltages, voltage differences, current differences, and temperature differences. The extreme gradient boosting (XGBoost) model for estimating the state of health (SOH) of lithium-ion batteries is based on the ensemble learning algorithm’s higher prediction accuracy and generalization ability. Experimental results suggest that the boundary gradient lifting algorithm model is capable of more accurate prediction.

Funder

Ministry of Small and Medium-sized Enterprises (SMEs) and Startups (MSS), Korea

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference62 articles.

1. Burke, A., and Miller, M. (2009, January 13–16). Performance characteristics of lithium-ion batteries of various chemistries for plug-in hybrid vehicles. Proceedings of the EVS24, Stavanger, Norway.

2. Joint estimation of battery parameters and state of charge using an extended Kalman filter: A single-parameter tuning approach;Beelen;IEEE Trans. Control Syst. Technol.,2020

3. A review of state of health estimation of energy storage systems: Challenges and possible solutions for futuristic applications of li-ion battery packs in electric vehicles;Sarmah;J. Electrochem. Energy Convers. Storage,2019

4. Cost-effectiveness of alternative powertrains for reduced energy use and CO2 emissions in passenger vehicles;Bishop;Appl. Energy,2014

5. Hybrid electric vehicles: Energy management strategies;Onori;IEEE Control Syst. Mag.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3