Accuracy Assessment of UAV-Photogrammetric-Derived Products Using PPK and GCPs in Challenging Terrains: In Search of Optimized Rockfall Mapping

Author:

Žabota BarbaraORCID,Kobal MilanORCID

Abstract

Unmanned aerial photogrammetric surveys are increasingly being used for mapping and studying natural hazards, such as rockfalls. Surveys using unmanned aerial vehicles (UAVs) can be performed in remote, hardly accessible, and dangerous areas, while the photogrammetric-derived products, with high spatial and temporal accuracy, can provide us with detailed information about phenomena under consideration. However, as photogrammetry commonly uses indirect georeferencing through bundle block adjustment (BBA) with ground control points (GCPs), data acquisition in the field is not only time-consuming and labor-intensive, but also extremely dangerous. Therefore, the main goal of this study was to investigate how accurate photogrammetric products can be produced by using BBA without GCPs and auxiliary data, namely using the coordinates X0, Y0 and Z0 of the camera perspective centers computed with PPK (Post-Processing Kinematic). To this end, orthomosaics and digital surface models (DSMs) were produced for three rockfall sites by using images acquired with a DJI Phantom 4 RTK and the two different BBA methods mentioned above (hereafter referred to as BBA_traditional and BBA_PPK). The accuracy of the products, in terms of the Root Mean Square Error (RMSE), was computed by using verification points (VPs). The accuracy of both BBA methods was also assessed. To test the differences between the georeferencing methods, two statistical test were used, namely a paired Student’s t-test, and a non-parametric Wilcoxon signed-rank. The results show that the accuracy of the BBA_PPK is inferior to that of BBA_traditional, with the total RMSE values for the three sites being 0.056, 0.066, and 0.305 m, respectively, compared to 0.019, 0.036 and 0.014 m obtained with BBA_traditional. The accuracies of the BBA methods are reflected in the accuracy of the orthomosaics, whose values for the BBA_PPK are 0.039, 0.043 and 0.157 m, respectively, against 0.029, 0.036 and 0.020 m obtained with the BBA_traditional. Concerning the DSM, those produced with the BBA_PPK method present accuracy values of 0.065, 0.072 and 0.261 m, respectively, against 0.038, 0.060 and 0.030 m obtained with the BBA_traditional. Even though that there are statistically significant differences between the georeferencing methods, one can state that the BBA_PPK presents a viable solution to map dangerous and exposed areas, such as rockfall transit and deposit areas, especially for applications at a regional level.

Funder

Interreg Alpine Space project "ROCKtheALPS"

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3