Rockfall Simulation Based on UAV Photogrammetry Data Obtained during an Emergency Declaration: Application at a Cultural Heritage Site

Author:

Sarro Roberto,Riquelme Adrián,García-Davalillo Juan,Mateos Rosa,Tomás Roberto,Pastor José,Cano Miguel,Herrera GerardoORCID

Abstract

In recent years, there was an increasing number of studies focusing on rockfalls due to their impacts on social and sustainable development. This work carries out a three-dimensional (3D) simulation of rockfalls at a cultural heritage site nearby the village of Cortes de Pallás (Valencian Community, East Spain). The simulation is based on data collected previously, during an emergency declaration due to the occurrence of a considerable rockfall (7980 m3) on the southern bank of the Cortes de Pallás reservoir, on 6 April 2015. The hydroelectric power plant was damaged, and the main access road to the village of Cortes de Pallás was blocked for eight months. The predominant discontinuities of the rock mass were analyzed by means of the application of structure from motion (SfM) photogrammetry techniques to the set of images taken by remotely piloted aircraft systems (RPAS). The average size of the block was determined as 3.2 m in diameter and 17.6 m3 in volume. Additionally, a digital elevation model (DEM) was generated from an aerial laser scanning (ALS)-derived point cloud using a 1 × 1 grid. These data were implemented in RocPro3D software, obtaining the distances traveled by the blocks detached from different source areas at a cultural heritage site located near the rockfall event, which presents the same geological context. The simulation presented herein shows aggravating circumstances that endanger the cultural heritage area, with higher rockfall hazards than previous official studies (1991) displayed.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3