Cloud Seeding Evidenced by Coherent Doppler Wind Lidar

Author:

Yuan Jinlong,Wu Kenan,Wei Tianwen,Wang Lu,Shu Zhifeng,Yang YuanjianORCID,Xia Haiyun

Abstract

Evaluation of the cloud seeding effect is a challenge due to lack of directly physical observational evidence. In this study, an approach for directly observing the cloud seeding effect is proposed using a 1548 nm coherent Doppler wind lidar (CDWL). Normalized skewness was employed to identify the components of the reflectivity spectrum. The spectrum detection capability of a CDWL was verified by a 24.23-GHz Micro Rain Radar (MRR) in Hefei, China (117°15′ E, 31°50′ N), and different types of lidar spectra were detected and separated, including aerosol, turbulence, cloud droplet, and precipitation. Spectrum analysis was applied as a field experiment performed in Inner Mongolia, China (112°39′ E, 42°21′ N ) to support the cloud seeding operation for the 70th anniversary of China’s national day. The CDWL can monitor the cloud motion and provide windshear and turbulence information ensuring operation safety. The cloud-precipitation process is detected by the CDWL, microwave radiometer (MWR) and Advanced Geosynchronous Radiation Imager (AGRI) in FY4A satellites. In particular, the spectrum width and skewness of seeded cloud show a two-layer structure, which reflects cloud component changes, and it is possibly related to cloud seeding effects. Multi-component spectra are separated into four clusters, which are well distinguished by spectrum width and vertical velocity. In general, our findings provide new evidence that the reflectivity spectrum of CDWL has potential for assessing cloud seeding effects.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3