Detection of Atmospheric Wind Speed by Lidar Based on Quadrichannel Mach–Zehnder Interferometer

Author:

Li Jun1,Lu Yusheng1,Yang Haima12ORCID,Li Zeng3,Liu Jin4,Qiang Jia2,Chen Yuwei5

Affiliation:

1. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

3. Shanghai Yihao Testing Technology Co., Ltd., Shanghai 201802, China

4. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

5. Advanced Laser Technology Lab of Anhui Province, Hefei 230039, China

Abstract

For a long time, wind speed profile measurement has been the primary task of weather forecasting. Therefore, the detection of atmospheric wind speed is extremely important for studying the changes in atmospheric motion. In order to solve the problems of insufficient data collection, low resolution, and low accuracy in atmospheric wind field detection, this paper introduces the relevant theories of wind speed detection, completes the optical design of the system according to the research objectives, and determines the selection of optical devices. At the same time, a Doppler wind lidar system based on a quadrichannel Mach–Zehnder interferometer is designed and built to carry out ground-based observation experiments, collect echo signal data, and inverse the atmospheric radial wind speed. Furthermore, the wind measurement error is analyzed. Firstly, the paper introduces the basic principle of the wind measurement system, i.e., using the Doppler effect of light, and then analyzes the frequency discrimination device of the system in detail, and obtains the theoretical calculation method of atmospheric wind speed inversion. At the same time, the relevant datasets of wind measurement system are analyzed, including backscattering ratio, aerosol, and molecular extinction coefficient, and the emission mechanism of the large pulse laser is also studied in detail, which provides a theoretical basis for the model construction of Doppler lidar and the research on the enhancement of pulsed laser emission energy. Secondly, according to the research index of wind measurement, a Doppler wind measurement lidar system based on a quadrichannel Mach–Zehnder interferometer is designed, including the design of ab external light path transceiver system, internal light path interferometer, software and hardware, and algorithm. The calibration of the quadrichannel Mach–Zehnder interferometer is completed, with its maximum interference contrast reaching 0.869. Through the self-developed optical transceiver system and data acquisition system, the echo signal of lidar is received and detected. Lastly, the data of echo signals collected by the interferometer are analyzed, the radial atmospheric wind speed profile is inversed, and the signal-to-noise ratio and wind speed measurement error of the system are evaluated. The experimental results show that the maximum signal-to-noise ratio (SNR) of the system can reach 1433 when the emission pulse energy of the large pulse laser is adjusted to 255 mJ, and the farthest wind speed detection distance is about 8 km. The high-precision wind speed detection range can reach 2 km, the actual wind measurement errors in this range are all within 1.593 m/s, and the minimum error is only 0.418 m/s. In addition, the backscattering coefficient and extinction coefficient of atmospheric molecules and aerosols in the range of 8 km and the atmospheric temperature in the range of 10 km are also measured. The measurement accuracy of the aerosol extinction coefficient is ±0.001 m−1, and the measurement error of atmospheric temperature within 10 km is within 2 K, achieving the expected goals.

Funder

Key Laboratory of Space Active Opto-electronics Technology of the Chinese Academy of Sciences

Shanghai Science and Technology Innovation Action Plan

Joint Astronomical Fund of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3