Spatiotemporal Patterns of Cultivated Land Quality Integrated with Multi-Source Remote Sensing: A Case Study of Guangzhou, China

Author:

Duan Dingding,Sun Xiao,Liang Shefang,Sun JingORCID,Fan Lingling,Chen Hao,Xia Lang,Zhao Fen,Yang Wanqing,Yang Peng

Abstract

Scientifically revealing the spatiotemporal patterns of cultivated land quality (CLQ) is crucial for increasing food production and achieving United Nations Sustainable Development Goal (SDG) 2: Zero Hunger. Although studies on the evaluation of CLQ have been conducted, an effective evaluation system that is suitable for the macro-regional scale has not yet been developed. In this study, we first defined the CLQ from four aspects: soil fertility, natural conditions, construction level, and cultivated land productivity. Then, eight indicators were selected by integrating multi-source remote sensing data to create a new CLQ evaluation system. We assessed the spatiotemporal patterns of CLQ in Guangzhou, China, from 2010 to 2018. In addition, we identified the main factors affecting the improvement of CLQ. The results showed that the CLQ continuously improved in Guangzhou from 2010 to 2018. The area of high-quality cultivated land increased by 13.7%, which was mainly distributed in the traditional agricultural areas in the northern and eastern regions of Guangzhou. The areas of medium- and low-quality cultivated land decreased by 8.1% and 5.6%, respectively, which were scattered throughout the whole study area. The soil fertility and high productivity capacity were the main obstacle factors that affected the improvement of CLQ. Simultaneously, the obstacle degree of stable productivity capacity gradually increased during the study period. Therefore, the targeted improvement measures could be put forward by applying biofertilizers, strengthening crop management and constructing well-facilitated farmland. The new CLQ evaluation system we proposed is particularly practical at the macro-regional scale, and the results provided targeted guidance for decision makers to improve CLQ and promote food security.

Funder

peng yang

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3