Upscaling Remote Sensing Inversion Model of Wheat Field Cultivated Land Quality in the Huang-Huai-Hai Agricultural Region, China

Author:

Li Yinshuai,Chang Chunyan,Wang Zhuoran,Qi Guanghui,Dong Chao,Zhao Gengxing

Abstract

It is an objective demand for sustainable agricultural development to realize fast and accurate cultivated land quality assessment. In this paper, Tengzhou city (county-scale hilly area: scale A), Shanghe county (county-scale plain area: scale B), and Huang-Huai-Hai region (including large-scale hilly and plain area: scale C and D) were taken as research areas. Through the conversion of evaluation systems, the inversion models at the county-scale were constructed. Then, the image scale conversion was carried out based on the numerical regression method, and the upscaling inversion was realized. The results showed that: (1) the conversion models of evaluation systems (CMES) are Y = 1.021x − 4.989 (CMESA−B), Y = 0.801x + 16.925 (CMESA−C), and Y = 0.959x + 3.458 (CMESC−D); (2) the booting stage is the best inversion phase; (3) the back propagation neural network model based on the combination index group (CI-BPNN) is the best inversion model, with the R2 are 0.723 (modeling set) and 0.722 (verification set). CI-BPNN and CI-BPNN-CMESA−B models are suitable for the hilly and plain areas at the county-scale, and the level area ratio difference is less than 4.87%. Furthermore, (4) the reflectance conversion model of short-wave infrared 2 is cubic, and the rest are quadratic. CI-BPNN-CMESA−C and CI-BPNN-CMESA−C-CMESC−D models realized upscaling inversion in the hilly and plain areas, with the maximum level area ratio difference being 1.60%. Additionally, (5) the wheat field quality has improved steadily since 2001 in the Huang-Huai-Hai region. This study proposes an upscaling inversion method of wheat field quality, which provides a scientific basis for cultivated land management and agricultural production in large areas.

Funder

Gengxing Zhao

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3