Author:
Li Yinshuai,Chang Chunyan,Wang Zhuoran,Qi Guanghui,Dong Chao,Zhao Gengxing
Abstract
It is an objective demand for sustainable agricultural development to realize fast and accurate cultivated land quality assessment. In this paper, Tengzhou city (county-scale hilly area: scale A), Shanghe county (county-scale plain area: scale B), and Huang-Huai-Hai region (including large-scale hilly and plain area: scale C and D) were taken as research areas. Through the conversion of evaluation systems, the inversion models at the county-scale were constructed. Then, the image scale conversion was carried out based on the numerical regression method, and the upscaling inversion was realized. The results showed that: (1) the conversion models of evaluation systems (CMES) are Y = 1.021x − 4.989 (CMESA−B), Y = 0.801x + 16.925 (CMESA−C), and Y = 0.959x + 3.458 (CMESC−D); (2) the booting stage is the best inversion phase; (3) the back propagation neural network model based on the combination index group (CI-BPNN) is the best inversion model, with the R2 are 0.723 (modeling set) and 0.722 (verification set). CI-BPNN and CI-BPNN-CMESA−B models are suitable for the hilly and plain areas at the county-scale, and the level area ratio difference is less than 4.87%. Furthermore, (4) the reflectance conversion model of short-wave infrared 2 is cubic, and the rest are quadratic. CI-BPNN-CMESA−C and CI-BPNN-CMESA−C-CMESC−D models realized upscaling inversion in the hilly and plain areas, with the maximum level area ratio difference being 1.60%. Additionally, (5) the wheat field quality has improved steadily since 2001 in the Huang-Huai-Hai region. This study proposes an upscaling inversion method of wheat field quality, which provides a scientific basis for cultivated land management and agricultural production in large areas.
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献