A Remote Sensing Approach to Estimating Cropland Sustainability in the Lateritic Red Soil Region of China

Author:

Duan Dingding1234,Sun Xiao2,Wang Chenrui2,Zha Yan2ORCID,Yu Qiangyi2,Yang Peng12ORCID

Affiliation:

1. Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, Xi’an 710049, China

2. State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences), Beijing 100081, China

3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

4. Piesat Information Technology Co., Ltd., Beijing 100195, China

Abstract

Spatiotemporal assessment and a comprehensive understanding of cropland sustainability are prerequisites for ensuring food security and promoting sustainable development. However, a remote sensing-based approach framework that is suitable for large-scale and high-precision assessment and can reflect the overall sustainability of cropland has not yet been developed. This study considered a typical lateritic red soil region of Guangdong Province, China, as an example. Cropland sustainability was examined from three aspects: natural capacity, management level, and food productivity. Ten typical indicators, including soil organic matter, pH, irrigation guarantee capability, multiple cropping index, and food productivity, among others, were constructed using remote sensing technology and selected to represent these three aspects. Based on the indicator system, we assessed the spatiotemporal patterns of cropland sustainability from 2010 to 2020. The results showed that the natural capacity, management level, and food productivity of cropland had improved over the 10 years. The cropland sustainability score increased from 67.95 to 69.08 over this period. The sustainability scores for 68.64% of cropland were increased and were largely distributed in the eastern and western region of the study area. The croplands with declining sustainability scores were mostly distributed in the central region. The prefecture-level regions differed in cropland sustainability, with Zhongshan, Zhuhai, and Qingyuan cities exhibiting the highest values, and Zhanjiang the lowest. Exploring the underlying mechanisms of cropland sustainability and proposing improvement measures can guide decision-making, cropland protection, and efficient utilization, especially in similar lateritic red soil regions of the world.

Funder

Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd. and Xi’an Jiaotong University

National Natural Science Foundation of China

National Key Research and Development Program of China

Agricultural Science and Technology Innovation Project of the Chinese Academy of Agriculture Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3