An Approach for Autonomous Feeding Robot Path Planning in Poultry Smart Farm

Author:

Zhang Yanjun,Sun Weiming,Yang Jian,Wu Weiwei,Miao Hong,Zhang ShanwenORCID

Abstract

In order to solve the problems of poor feeding environment, untimely feeding and high labor demand in poultry smart farms, the development of feeding robots is imminent, while the research on path planning algorithms is an important part of developing feeding robots. The energy consumption of the feeding robot is one of the important elements of concern in the process of path planning. In this study, the shortest path does not mean that the feeding robot consumes the least energy, because the total mass of the feeding robot keeps changing during the feeding process. It is necessary to find the most suitable path so that the feeding robot consumes the lowest amount of energy during the feeding process. A branch and bound algorithm to calculate the minimum energy consumption travel path for small-scale buckets lacking feed is proposed. The lower bound of the branch and bound on the energy consumption is obtained by the approach of preferred selection of the set of shortest edges combined with the sequence inequality, and the upper bound could be obtained based on Christofides’s Heuristic algorithm. A double-crossover operator genetic algorithm based on an upper bound on energy consumption for large-scale buckets lacking feed is proposed, and different crossover operations are performed according to the relationship between the fitness value and the upper bound of energy consumption in order to find a better path. The experiment results show that the approach proposed in this study is efficient; for small-scale buckets lacking feed, a branch and bound algorithm could calculate the minimum energy consumption path of 17 points in 300 s, and for large-scale buckets lacking feed, a double-crossover operator genetic algorithm based on an upper bound on energy consumption could calculate the minimum energy consumption travel path within 30 points in 60 s. The result is more accurate compared to the genetic algorithm with a single crossover operator.

Funder

National Natural Science Foundation of China

Agricultural Independent Innovation Fund Project in Jiangsu Province of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3