Multi-Agent Reinforcement Learning Approach for Residential Microgrid Energy Scheduling

Author:

Fang Xiaohan,Wang Jinkuan,Song Guanru,Han Yinghua,Zhao Qiang,Cao Zhiao

Abstract

Residential microgrid is widely considered as a new paradigm of the home energy management system. The complexity of Microgrid Energy Scheduling (MES) is increasing with the integration of Electric Vehicles (EVs) and Renewable Generations (RGs). Moreover, it is challenging to determine optimal scheduling strategies to guarantee the efficiency of the microgrid market and to balance all market participants’ benefits. In this paper, a Multi-Agent Reinforcement Learning (MARL) approach for residential MES is proposed to promote the autonomy and fairness of microgrid market operation. First, a multi-agent based residential microgrid model including Vehicle-to-Grid (V2G) and RGs is constructed and an auction-based microgrid market is built. Then, distinguish from Single-Agent Reinforcement Learning (SARL), MARL can achieve distributed autonomous learning for each agent and realize the equilibrium of all agents’ benefits, therefore, we formulate an equilibrium-based MARL framework according to each participant’ market orientation. Finally, to guarantee the fairness and privacy of the MARL process, we proposed an improved optimal Equilibrium Selection-MARL (ES-MARL) algorithm based on two mechanisms, private negotiation and maximum average reward. Simulation results demonstrate the overall performance and efficiency of proposed MARL are superior to that of SARL. Besides, it is verified that the improved ES-MARL can get higher average profit to balance all agents.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Hubei Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3