A Multiparadigm Approach for Generation Dispatch Optimization in a Regulated Electricity Market towards Clean Energy Transition

Author:

Isnandar Suroso12,Simorangkir Jonathan F.1ORCID,Banjar-Nahor Kevin M.1,Paradongan Hendry Timotiyas3,Hariyanto Nanang1

Affiliation:

1. School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia

2. Perusahaan Listrik Negara, PT PLN Persero, Jakarta 12160, Indonesia

3. School of Business and Management, Bandung Institute of Technology, Bandung 40132, Indonesia

Abstract

In Indonesia, the power generation sector is the primary source of carbon emissions, largely due to the heavy reliance on coal-fired power plants, which account for 60% of electricity production. Reducing these emissions is essential to achieve national clean energy transition goals. However, achieving this initiative requires careful consideration, especially regarding the complex interactions among multiple stakeholders in the Indonesian electricity market. The electricity market in Indonesia is characterized by its non-competitive and heavily regulated structure. This market condition often requires the PLN, as the system operator, to address multi-objective and multi-constraint problems, necessitating optimization in the generation dispatch scheduling scheme to ensure a secure, economical, and low-carbon power system operation. This research introduces a multiparadigm approach for GS optimization in a regulated electricity market to support the transition to clean energy. The multiparadigm integrates multi-agent system and system dynamic paradigms to model, simulate, and quantitatively analyze the complex interactions among multiple stakeholders in the Indonesian regulated electricity market. The research was implemented on the Java–Madura–Bali power system using AnyLogic 8 University Researcher Software. The simulation results demonstrate that the carbon policy scheme reduces the system’s carbon emissions while increasing the system’s cost of electricity. A linear regression for sensitivity analysis was conducted to determine the relationship between carbon policies and the system’s cost of electricity. This research offers valuable insights for policymakers to develop an optimal, acceptable, and reasonable power system operation scheme for all stakeholders in the Indonesian electricity market.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3