Distributed Optimization of Multi-Microgrid Integrated Energy System with Coordinated Control of Energy Storage and Carbon Emissions

Author:

Shi Linjun1,Cen Zimeng1,Li Yang1,Wu Feng1,Lin Keman1,Yang Dongmei2

Affiliation:

1. School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China

2. State Key Laboratory of Smart Grid Protection and Control, Nari Group Corporation, Nanjing 211106, China

Abstract

The mutual optimization of a multi-microgrid integrated energy system (MMIES) can effectively improve the overall economic and environmental benefits, contributing to sustainability. Targeting a scenario in which an MMIES is connected to the same node, an energy storage coordination control strategy and carbon emissions management strategy are proposed, and an adaptive step-size method is applied to improve the distributed optimization of MMIESs based on the alternating direction multiplier method (ADMM). Firstly, the basic framework of MMIESs is established, and a coordinated control strategy limiting the time of charge and the discharge of the battery storage system (BSS) is proposed. Then a multi-objective optimization model based on operating and environmental cost is formulated. Considering that different microgrids may be managed by different operators and a different convergence speed of multi-objective optimization iteration, an adaptive step-size distributed iterative optimization method based on ADMM is used, which can effectively reduce the cost and protect the privacy of each microgrid. Finally, a system composed of three microgrids is taken as an example for simulation analysis. The results of distributed optimization are accurate, and the proposed coordinated control strategy can effectively enhance the revenue of ESS, which verifies the effectiveness of the proposed method.

Funder

State Key Laboratory of Smart Grid Protection and Operation Control of China

National Natural Science Foundation of China

Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3