Summer Mass Balance and Surface Velocity Derived by Unmanned Aerial Vehicle on Debris-Covered Region of Baishui River Glacier No. 1, Yulong Snow Mountain

Author:

Che Yanjun,Wang Shijin,Yi Shuhua,Wei YanqiangORCID,Cai Yancong

Abstract

Glacier retreat is a common phenomenon in the Qinghai-Tibetan Plateau (QTP) with global warming during the past several decades, except for several mountains, such as the glaciers in the Karakoram and the western Kunlun Mountains. The dynamic nature of glaciers significantly influences the hydrologic, geologic, and ecological systems in the mountain regions. The sensitivity and dynamic response to climate change make glaciers excellent indicators of regional and global climate change, such as glacier melting and retreat with the rise of local air temperature. Long-term monitoring of glacier change is important to understand and assess past, current, and possible future climate environments. Some glacier surfaces are safe and accessible by foot, and are monitored using mass balance stakes and snow pits. Meanwhile, some glaciers with inaccessible termini may be surveyed using satellite remote images and Unmanned Aerial Vehicles (UAVs). Those inaccessible glaciers are generally covered by debris in the southeast QTP, which is hardly accessible due to the wide distribution of crevasses and cliffs. In this paper, we used the UAV to monitor the dynamic features of mass balance and velocity of the debris-covered region of Baishui River Glacier No. 1 (BRG1) on the Yulong Snow Mountain (YSM), Southeast QTP. We obtained the Orthomosaic and DEM with a high resolution of 0.10 m on 20 May and 22 September 2018, respectively. The comparison showed that the elevation of the debris-covered region of the BRG1 decreased by 6.58 m ± 3.70 m on average, and the mean mass balance was −5.92 m w.e. ± 3.33 m w.e. during the summer, correspondingly. The mean displacement of debris-covered glacier surface was 18.30 m ± 6.27 m, that is, the mean daily velocity was 0.14 m/d ± 0.05 m/d during the summer. In addition, the UAV images not only revealed the different patterns of glacier melting and displacement but also captured the phenomena of mass loss due to ice avalanches at the glacier front and the development of large crevasses. This study provides a feasible method for understanding the dynamic features of global debris-covered glaciers which are inaccessible and unobservable by other means.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3