Contrasting Changes of Debris-Free Glacier and Debris-Covered Glacier in Southeastern Tibetan Plateau

Author:

Zhao Chuanxi12,He Zhen2,Kang Shengyu3,Zhang Tianzhao2,Wang Yongjie2,Li Teng4ORCID,He Yifei2,Yang Wei2

Affiliation:

1. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

2. State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

3. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China

4. School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519000, China

Abstract

Debris-free and debris-covered glaciers are both extensively present in the southeastern Tibetan Plateau. High-precision and rigorous comparative observational studies on different types of glaciers help us to accurately understand the overall state of water resource variability and the underlying mechanisms. In this study, we used multi-temporal simultaneous UAV surveys to systematically explore the surface elevation change, surface velocity, and surface mass balance of two representative glaciers. Our findings indicate that the thinning rate in the debris-free Parlung No. 4 glacier UAV survey area was consistently higher than that in the debris-covered 24K glacier in 2020–2021 (−1.16 ± 0.03 cm/d vs. −0.36 ± 0.02 cm/d) and 2021–2022 (−0.69 ± 0.03 cm/d vs. −0.26 ± 0.03 cm/d). Moreover, the surface velocity of the Parlung No. 4 glacier was also consistently higher than that of the 24K glacier across the survey period, suggesting a more dynamic glacial state. The surface mass balance of the Parlung No. 4 glacier (2020–2021: −1.82 ± 0.09 cm/d; 2021–2022: −1.30 ± 0.09 cm/d) likewise outpaced that of the 24K glacier (2020–2021: −0.81 ± 0.07 cm/d; 2021–2022: −0.70 ± 0.07 cm/d) throughout the observation period, which indicates that the debris cover slowed the glacier’s melting. Additionally, we extracted the melt contribution of the ice cliff area in the 24K glacier and found that the melt ratio of this ‘hotspot’ area ranged from 10.4% to 11.6% from 2020 to 2022. This comparative analysis of two representative glaciers provides evidence to support the critical role of debris cover in controlling surface elevation changes, glacier dynamics, and surface mass balance.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3