A Tube Model Predictive Control Method for Autonomous Lateral Vehicle Control Based on Sliding Mode Control

Author:

Dai Yong12ORCID,Wang Duo1ORCID

Affiliation:

1. School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China

2. Science and Technology Development Corporation, Shenyang Ligong University, Shenyang 110003, China

Abstract

This paper aims to enhance the lateral path tracking control of autonomous vehicles (AV) in the presence of external disturbances. While AV technology has made significant strides, real-world driving scenarios often pose challenges such as slippery or uneven roads, which can adversely affect the lateral path tracking control and reduce driving safety and efficiency. Conventional control algorithms struggle to address this issue due to their inability to account for unmodeled uncertainties and external disturbances. To tackle this problem, this paper proposes a novel algorithm that combines robust sliding mode control (SMC) and tube model predictive control (MPC). The proposed algorithm leverages the strengths of both MPC and SMC. Specifically, MPC is used to derive the control law for the nominal system to track the desired trajectory. The error system is then employed to minimize the difference between the actual state and the nominal state. Finally, the sliding surface and reaching law of SMC are utilized to derive an auxiliary tube SMC control law, which helps the actual system keep up with the nominal system and achieve robustness. Experimental results demonstrate that the proposed method outperforms conventional tube MPC, linear quadratic regulator (LQR) algorithms, and MPC in terms of robustness and tracking accuracy, especially in the presence of unmodeled uncertainties and external disturbances.

Funder

2021 HighBlevel Talents Research Support Program of Shenyang Ligong University

Scientific Research Fund of Liaoning Provincial Education Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3