Research on Intelligent Vehicle Trajectory Tracking Control Based on Improved Adaptive MPC

Author:

Tan Wei1,Wang Mengfei1,Ma Ke1

Affiliation:

1. Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China

Abstract

Intelligent vehicle trajectory tracking exhibits problems such as low adaptability, low tracking accuracy, and poor robustness in complex driving environments with uncertain road conditions. Therefore, an improved method of adaptive model predictive control (AMPC) for trajectory tracking was designed in this study to increase the corresponding tracking accuracy and driving stability of intelligent vehicles under uncertain and complex working conditions. First, based on the unscented Kalman filter, longitudinal speed, yaw speed, and lateral acceleration were considered as the observed variables of the measurement equation to estimate the lateral force of the front and rear tires accurately in real time. Subsequently, an adaptive correction estimation strategy for tire cornering stiffness was designed, an AMPC method was established, and a dynamic prediction time-domain adaptive model was constructed for optimization according to vehicle speed and road adhesion conditions. The improved AMPC method for trajectory tracking was then realized. Finally, the control effectiveness and trajectory tracking accuracy of the proposed AMPC technique were verified via co-simulation using CarSim and MATLAB/Simulink. From the results, a low lateral position error and heading angle error in trajectory tracking were obtained under different vehicle driving conditions and road adhesion conditions, producing high trajectory-tracking control accuracy. Thus, this work provides an important reference for improving the adaptability, robustness, and optimization of intelligent vehicle tracking control systems.

Funder

Chongqing Technology Innovation and Application Development Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3