Abstract
Research on trajectory tracking is crucial for the development of autonomous vehicles. This paper presents a trajectory tracking scheme by utilizing model predictive control (MPC) and preview-follower theory (PFT), which includes a reference generation module and a MPC controller. The reference generation module could calculate reference lateral acceleration at the preview point by PFT to update state variables, and generate a reference yaw rate in each prediction point. Since the preview range is increased, PFT makes the calculation of yaw rate more accurate. Through physical constraints, the MPC controller can achieve the best tracking of the reference path. The MPC problem is formulated as a linear time-varying (LTV) MPC controller to achieve a predictive model from nonlinear vehicle dynamics to continuous online linearization. The MPC-PFT controller method performs well by increasing the effective length of the reference path. Compared with MPC and PFT controllers, the effectiveness and robustness of the proposed method are proved by simulations of two typical working conditions.
Funder
National Natural Science Foundation of China
Science and Technology Research and Development Foundation of Shenzhen
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献